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Metal-catalyzed cross-coupling has been established as a con-
venient, practical and effective method for the formation of a myriad
of sp2-sp2 bonds under mild conditions.1 Of this stable of name
reactions, several are capable of coupling sp2 electrophiles with
sp3 nucleophiles.2 The reverse, coupling sp3 electrophiles with sp2

or sp3 nucleophiles, has seen some remarkable advances in recent
years, helping dispel the myth thatâ-hydride elimination would
be an insurmountable problem.3 However, in almost every case,
the two sp3 carbon atoms involved in the cross-coupling are terminal
(primary), and stereochemistry is not generated in the cross-coupling
event.4-6 We report herein a nickel-mediated decarbonylative cross-
coupling of meso anhydrides, which constitutes the first example
of an sp3(electrophile)-sp2(nucleophile) cross-coupling reaction that
generates stereochemistry.

Investigations began with the known insertion of low-valent
nickel complexes into cyclic anhydrides.7 Decarbonylation8 of the
initial insertion product provides a nickelalactone possessing a
secondary C(sp3)-Ni bond. We envisioned that this intermediate
could be trapped by cross-coupling with an organometallic nucleo-
phile. Organozinc reagents were chosen as nucleophiles on the basis
of our previous report.9 Anhydride1 was subjected to a variety of
nickel-ligand complexes at 66°C in THF, in an attempt to find
conditions that would afford cross-coupled product2 and avoid
the formation of direct addition product3.10

The reaction is very sensitive to nickel complex, eq 1. Phosphine
ligands such as bis(diphenylphosphino)butane (dppb) were not
suitable in this reaction and yielded only trace amounts of either
product. Although bipyridyl-type ligands provided a mixture of2
and3, increased steric congestion around the metal induced by 2,9-
dimethyl-1,10-phenanthroline (neocuproine) resulted in a remark-
able increase in decarbonylation efficiency.

Unfortunately, more complex anhydrides still yielded minor
amounts of direct addition product, eq 2. We hypothesized that
upon decarbonylation, CO remains coordinated to the nickel,11 and
may reinsert into the metallacycle, yielding direct addition product.
To remove the CO from the nickel-neocuproine complex, we

anticipated that the addition of a second nickel-ligand complex
with a much greater affinity for CO (more electron-rich) may
sequester the byproduct. Given its demonstrated inefficiency at
mediating the decarbonylative cross-coupling, dppb seemed the
logical choice. This proved successful, completely suppressing the
direct addition pathway, eq 2.12

A variety of cyclic anhydrides undergo successful decarbonyl-
ative cross-coupling, Table 1. The cyclopropane succinic anhydride
13 providesâ-cross-coupled product14 in 60% yield with no loss
of stereochemical integrity. [2.2.1]-Tricyclic anhydride15 and its
two analogues17 and4 lead to bicyclic acids,16, 18, and5 in 78,
56, and 77% yields, respectively. [2.2.2]-Bicyclooctane-derived
anhydrides19 and 21 require higher temperatures for complete
decarbonylation, yielding20 in 51% yield and22 in 50% yield.
Glutaric anhydride23 affords the desired product in low yield
(<20%) when neocuproine is used as a ligand. However, the use
of tetramethylethylenediamine (TMEDA, 1.5 equiv) with Ni(COD)2

(2 equiv) and dppb (0.5 equiv) providesγ-cross-coupled product
24 in good yield. trans-Cyclohexanedicarboxylic anhydride25
decarbonylates completely at 45°C, without any loss of stereo-
chemical integrity to afford a single isomer in 77% yield. The
absence of diastereomeric acids in any of these reactions suggests
that the integrity of the presumed sp3-Ni stereocenter is maintained
during the transmetalation/reductive elimination sequence and
argues against the possible intervention of alkyl radicals in the cross-
coupling.13,14

When succinic anhydride endo-27was subjected to these reaction
conditions, γ-substituted carboxylic acid28 was obtained in
moderate yield, eq 4. This product presumably arises from alkene
insertion into the initially generated nickelalactone29 to provide
new nickelalactone30. At this time, it is not clear what drives this
reaction; strain energy associated with the five-membered nickela-
lactone is potentially relieved upon isomerization to the six-
membered lactone in30, at the expense of the formation of a
cyclopropane ring. It is also conceivable that the transmetalation
to 30 is faster for steric reasons. This reaction does not occur with
exo-17, suggesting that the cyclization does not occur from
homolytic cleavage of the Ni-C bond.
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Subjection of meso-dimethyl glutaric anhydride31, to the
prescribed reaction conditions results inâ-cross-coupled product
32, formed as a single diastereomer in 74% yield, eq 5. This
presumably proceeds via isomerization ofδ-nickelalactone33 to
γ-nickelalactone35 by a â-hydride elimination/hydrometalation
sequence.15

In summary, we have developed a nickel-mediated decarbonyl-
ation/cross-coupling of meso anhydrides, which constitutes the first
example of an sp3(electrophile)-sp2(nucleophile) cross-coupling
reaction that generates stereochemistry. Efforts to expand the scope
and render the system catalytic in nickel are currently under way.
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Table 1. Substrate Scope in the Nickel-Mediated Decarbonylative
Cross-Coupling of Cyclic Anhydrides

a Isolated yield of analytically pure material. In every case, direct addition
product is not visible by1H NMR in the unpurified reaction mixture (<5%).
Mass balance typically resides in reduced decarbonylated product.b Reaction
conducted in dioxane at 80°C. c Reaction conducted using TMEDA (1.5
equiv), Ni(COD)2 (2 equiv).d Reaction conducted at 45°C.
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